

COMENIUS UNIVERSITY

Faculty of Medicine

Department of Medical Chemistry, Biochemistry and Clinical Biochemistry

Effect of vitamin D on senescent cells

Ingrid Žitňanová, Mária Janubová, Petra Pazderová, Zuzana Sumbalová

Nutriaging summer school

Ing. Katarína Koňariková, PhD.

2022

Replicative model of senescence

Stress induced senescence

We passaged cells up to the passage 21, when the senescence marker levels were the highest.

Cells were treated

with 100 μ M hydrogen peroxide

for 30 min.

Materials and methods

Human lung cells (MRC-5)

Human astrocytes (NHA5)

- in passage 8-10 (p8-10) as normal cells
- in passage 21 (p21) as senescent cells
- senescence induced by 100 μ M H₂O₂

Vitamin D

- 1, 10, 20, 25, 50, 100 nM
- in DMSO
- in EtOH

Methods	Analysis
MTT colorimetric technique	Viability of the cells
Muse [®] Cell Cycle Assay Kit	Distribution of cells in the individual phases of the cell cycle
Western blot analysis	Molecular mechanism
Quantitative Real-time PCR = qRT-PCR	Gene expression at the level of transcription
Mitochondrial respiration	Measurement of respiration

Methods	Analysis
MTT colorimetric technique	Viability of the cells
Comet assay Normoglycemic condition Western blot analysis	Damage of DNA On Hyperglycemic condition Molecular mechanism

+ seeded the cells under HG conditions + incubated for 24 hours

+ affected cells with vitamin D for 24 hours

Vitamin D

Damaged the cells with H_2O_2 and then affected vitamin D

Added vitamin D to the cells and then damaged them with H₂O₂

MRC-5 cells + seeded the cells under normal conditions + incubated for 24 h + changed the NG conditions to HG not hyperglycemic + addition of vitamin D NG Vitamin D Vitamin D Damaged the cells Damaged the cells with H_2O_2 with H_2O_2 and then affected and then affected vitamin D vitamin D Added vitamin D Added vitamin D to the cells and to the cells and then damaged then damaged them with H_2O_2 them with H_2O_2

Methods	Analysis
MTT colorimetric technique	Viability of the cells
Muse [®] Cell Cycle Assay Kit	Distribution of cells in the individual phases of the cell cycle
Western blot analysis	Molecular mechanism
Quantitative Real-time PCR = qRT-PCR	Gene expression at the level of transcription
Mitochondrial respiration	Measurement of respiration

- Muse® Cell Cycle Assay Kit
 - Normoglycemic conditon

Methods	Analysis
MTT colorimetric technique	Viability of the cells
Muse [®] Cell Cycle Assay Kit	Distribution of cells in the individual phases of the cell cycle
Western blot analysis	Molecular mechanism
Quantitative Real-time PCR = qRT-PCR	Gene expression at the level of transcription
Mitochondrial respiration	Measurement of respiration

Non- Programmed Cell Death (Necrosis) -Mitochondrial

(in animal

cells)

swelling -Cell swelling -Membrane rupture

- Western blot analysis
 - normo and hyperglycemic condition
 - in passage 8 (p8) as normal cells

• in passage 21 (p21) as senescent cells

	C (NG)	vit. D	C (HG)	vit. D		C (NG)	vit. D	C (HG)	vit. D
						-	5	-	STOCKE.
L	Аро	ptosis – casp	ase 3 (30 kDa				Autophagy	– LC3 (12kD	a)
p21	-		-	•	p21	-	-	-	

Methods	Analysis
MTT colorimetric technique	Viability of the cells
Muse [®] Cell Cycle Assay Kit	Distribution of cells in the individual phases of the cell cycle
Western blot analysis	Molecular mechanism
Quantitative Real-time PCR = qRT-PCR	Gene expression at the level of transcription
Mitochondrial respiration	Measurement of respiration

- quantitative Real-time PCR = qRT-PCR
 - Normoglycemic condition

- quantitative Real-time PCR = qRT-PCR
 - Normoglycemic condition

Mitochondrial respiration

Methods	Analysis
MTT colorimetric technique	Viability of the cells
Muse [®] Cell Cycle Assay Kit	Distribution of cells in the individual phases of the cell cycle
Western blot analysis	Molecular mechanism
Quantitative Real-time PCR = qRT-PCR	Gene expression at the level of transcription
Mitochondrial respiration	Measurement of respiration

Mitochondrial respiration

DatLab (O2k P1) [C:\Datlab7\DatLab\DLData\PLT\Infertility_2022\2022-07-22 P1-02.DLD]

– 0 X

Materials and methods

Human lung cells (MRC-5)

Human astrocytes (NHA5)

- in passage 8 (p8) as normal cells
- in passage 21 (p21) as senescent cells
- senescence induced by 100 μ M H₂O₂

Vitamin D

- 1, 10, 20, 25, 50, 100 nM
- in DMSO
- in EtOH

+ incubation until 72h

+ incubation until 72h

+ incubation until 72h

- + medium exchange
- + incubation until 72h

+ seeded the cells under HG conditions

+ incubated for 24 hours

+ affected cells with vitamin D for 24 hours

Vitamin D

Damaged the cells with H_2O_2 and then affected vitamin D

Added vitamin D to the cells and then damaged them with H_2O_2 not hyperglycemic

NHA5 cells

Vitamin D

Damaged the cells with H_2O_2 and then affected vitamin D

Added vitamin D to the cells and then damaged them with H_2O_2

+ seeded the cells under normal conditions
+ incubated for 24 h
+ changed the NG conditions to HG
+ addition of vitamin D

Vitamin D

Damaged the cells with H_2O_2 and then affected vitamin D

Added vitamin D to the cells and then damaged them with H_2O_2

Summary

In senescent MRC -5 cells vitamin D in concentration of 25 nM:

- Positively affected cell viability compared to control cells that were not affected by vitamin D
- We observed a slight decrease of cells in the G1 phase compared to the control and an increase in G2/M phase
- It reduced the expression of the p21 gene at the transcriptional and

protein levels

Summary

In senescent MRC -5 cells vitamin D in concentration of 25 nM:

- It reduced the expression of the p53 gene at the protein level
- It increased the expression of the LBR gene at the transcriptional level
 - Vitamin D reduced LC3 protein levels

In senescence astrocytes vitamin D in concentrations of 25 a 50 nM:

• Positively affected cell viability

Thank you to my colleagues for their support in carrying out these experiments:

Ingrid Žitňanová, Mária Janubová, Zuzana Sumbalová

Thank you for your attention

References

Kulda V. Vitamin D metabolism. Vnitrni lekarstvi 2012; 58 (5): 400-404.

Savastano S, Barrea L, Savanelli MC. Low vitamin D status and obesity: Role of nutritionist. Reviews in endocrine and metabolic disorders 2017; 18 (2): 215-225.

Chiang CM, Ismaeel A, et al. Effects of Vitamin D Supplementation on Muscle Strength in Athletes: A Systematic Review. Journal of strength and conditioning research 2017; 31 (2): 566-574.

Dupuis J, Langenberg C. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics 2010; 42: 105-116.

Danescu LG, Levy S, Levy J. Vitamin D and diabetes mellitus 2009; 35: 11-17.

Agashe S, Petak S. Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist Debakey Cardiovasc 2018; 14 (4): 251-256.

Cui GS, Zeng JY, Zhang J, Lu R. Effect of nerve growth factor on osteogenic potential of type 2 diabetic mice bone marrow stromal cell in vitro. National Library of Medicine 2018; 53 (2): 97-102.

Briggs R, Kennelly SP, O'Neill D. Drug treatments in Alzheimer's disease. Clinical medicine 2016; 16 (3): 247-253. Landel V, **Annweiler C, Millet P.** Vitamin D, Cognition and Alzheimer's Disease: The Therapeutic Benefit is in the D-Tails. Journal of Alzheimer's disease 2016; 53 (2): 419-444.

Gil Á, Plaza-Diaz J, Mesa MD. Vitamin D: Classic and Novel Actions. Annals of nutrition and metabolism 2018; 72(2): 87-95. Garcion E, Barbot NW, Menei CNM. New clues about vitamin D functions in the nervous system. Trends in Endocrinology & Metabolism 2002; 13 (3): 100-105.